Note

Structure of the O-specific polysaccharide of Citrobacter freundii O3a,3b,1c

Nina A. Kocharova ^a, Svetlana A. Borisova ^a, Georgy V. Zatonsky ^a, Alexander S. Shashkov a, Yuriy A. Knirel a,*, Elena V. Kholodkova b, Evgeny S. Staniskavsky ^b

Received 14 July 1997; accepted 2 October 1997

Abstract

The following structure of the O-specific polysaccharide of Citrobacter freundii O3a,3b,1c containing D-mannose and D-rhamnose was established using sugar analysis and NMR spectroscopy, including computer-assisted analysis of the ¹³C NMR spectrum, 2D COSY, H,H-relayed COSY, heteronuclear ¹³C, ¹H correlation (HETCOR), and rotating-frame NOE spectroscopy (ROESY): \rightarrow 4)- α -D-Manp-(1 \rightarrow 3)- β -D-Rhap-(1 \rightarrow 4)- β -D-Rhap-(1 \rightarrow . © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Lipopolysaccharide; O-specific polysaccharide; D-Rhamnose; Citrobacter freundii

Citrobacter freundii is an enterobacterium taxonomically related to Salmonella. Strains of C. freundii are serologically heterogeneous due to structural diversity of their surface lipopolysaccharide (O-antigen) [1]. Structural and serological studies showed that in some serogroups the O-specific polysaccharide chains of the lipopolysaccharides are similar to those of Salmonella [1-3], while others have unique structures (Ref. [4] and references cited therein). Now, we report on the structure of the O-specific polysaccharide of C. freundii serogroup O3a,3b,1c.

The O-specific polysaccharide was obtained by degradation of the lipopolysaccharide, isolated from

dry bacterial cells by the phenol-water procedure [5], followed by GPC on Sephadex G-50. Sugar analysis, including determination of the absolute configurations [6], showed that the polysaccharide contains D-mannose and D-rhamnose in the ratio $\sim 1:2$.

The ¹³C NMR spectrum (Fig. 1) of the polysaccharide contained signals for three anomeric carbons at δ 100.4, 101.5, and 101.8, two CH₃-C groups (C-6 of Rha) at δ 18.1 (2 C), one unsubstituted HOCH₂-C group (C-6 of Man) at δ 62.2, and 12 sugar ring carbons in the region δ 71.1–83.6. Accordingly, the ¹H NMR spectrum of the polysaccharide contained, inter alia, signals for three anomeric protons at δ 4.61, 4.64, and 5.03 (all broadened singlets), and two CH₃-C groups (H-6 of Rha) at δ 1.25 (6 H, d, $J_{5,6}$ 6

These data showed that the polysaccharide is linear

^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 117913, Russian Federation

^b I.I. Mechnikov Central Research Institute of Vaccines and Sera, Moscow 103064, Russian Federation

Corresponding author.

	C-1	C-2	C-3	C-4	C-5	C-6
\rightarrow 4)- α -D-Man p -(1 \rightarrow	100.4	71.1	70.7	78.4	73.3	62.2
	(103.6)	(71.5)	(70.5)	(78.5)	(73.2)	(61.6)
\rightarrow 3)- β -D-Rha p^{II} -(1 \rightarrow	101.8	71.8	81.9	72.5	73.6	18.1
	(101.4)	(71.4)	(81.0)	(72.5)	(73.2)	(18.0)
\rightarrow 4)- β -D-Rha p^{I} -(1 \rightarrow	101.5	71.4	72.9	83.6	72.4	18.1
	(101.4)	(71.6)	(73.0)	(83.4)	(72.2)	(18.0)

Table 1 75 MHz 13 C NMR data for the O-specific polysaccharide (δ in ppm). Data calculated by the published method [7,8] are given in parenthesis

and has a trisaccharide repeating unit containing one residue of D-mannose and two residues of D-rhamnose.

Computer-assisted analysis [7,8] revealed only one linear structure (1) that fitted with the 13 C NMR spectrum of the polysaccharide (Table 1). It was characterised by the least sum of squared deviations of chemical shifts in the predicted and experimental spectra (S = 0.6 after normalisation to one sugar residue), while other theoretically possible structures with the given sugar composition had significantly higher S values (> 1.5).

$$\rightarrow$$
 4)- α -D-Man p -(1 \rightarrow 3)- β -D-Rha p ^{II}

$$-(1 \rightarrow 4)-\beta$$
-D-Rha p ^I-(1 \rightarrow 1

To confirm this structure, the ¹H NMR spectrum of the polysaccharide was completely assigned (Table 2) using COSY and H,H-relayed COSY experiments, and then the ¹³C NMR spectrum was assigned using a ¹³C, ¹H HETCOR experiment (Table 1). The ¹J_{C-1,H-1} coupling constant value determined from the

gated-decoupling spectrum of the polysaccharide for both rhamnose residues was relatively small (159 Hz) and that for the mannose residue was relatively large (171 Hz). These data showed [9] that mannose is α -linked and both rhamnose residues are β -linked.

Downfield displacements of the signals for C-4 of Man and Rha^I and C-3 of Rha^{II} to δ 78.4, 83.6, and 81.9 in the ¹³C NMR spectrum of the polysaccharide, as compared with their positions [7] in the spectra of the corresponding nonsubstituted monosaccharides at δ 68.2, 73.1, and 74.0, respectively, confirmed the substitution pattern.

Although the data of a 2D ROESY experiment could not be interpreted unambiguously owing to coincidence of some signals (e.g., those for H-3 of Rha^I and Rha^{II}), the spectrum displayed the expected cross-peaks which could be assigned to Man H-1, Rha^{II} H-3 at δ 5.03/3.61, Rha^{II} H-1, Rha^I H-4 at δ 4.64/3.43, and Rha^I, H-1, Man H-4 at 4.61/3.76.

Therefore, on the basis of the data obtained, it was concluded that the O-specific polysaccharide of *C. freundii* O3a,3b,1c has structure 1. Remarkably, the

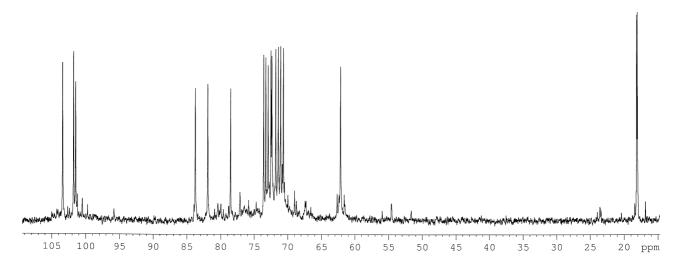


Fig. 1. 75 MHz ¹³C NMR spectrum of the O-specific polysaccharide.

Table 2 300 MHz 1 H NMR data for the O-specific polysaccharide (δ in ppm)

	H-1	H-2	H-3	H-4	H-5	H-6
\rightarrow 4)-α-D-Man p -(1 \rightarrow \rightarrow 3)- β -D-Rha p ^{II} -(1 \rightarrow	5.03	4.04	3.92	3.76	3.83	3.73
\rightarrow 3)- β -D-Rha p^{II} -(1 \rightarrow	4.64	4.16	3.61	3.40	3.39	1.25
\rightarrow 4)- β -D-Rha p^{I} -(1 \rightarrow	4.61	4.02	3.62	3.43	3.47	1.25

polysaccharide includes D-rhamnose which is common to O-antigens of some phytopathogenic bacteria, such as *Pseudomonas syringae*, but uncommon to enterobacterial lipopolysaccharides [10].

1. Experimental

Bacterium, growth and isolation of LPS.—The bacterial culture of Citrobacter O3a,3b,1c (strain 35/57) was from the Czech National Collection of Type Cultures (Institute of Microbiology and Epidemiology, Prague). Growth of the bacterium in a dense agar medium [11], isolation of the lipopolysaccharide [5] and the O-specific polysaccharide [11] were performed as described.

Sugar analysis.—The polysaccharide was hydrolysed with 2 M CF₃CO₂H (121 °C, 1 h), released monosaccharides were converted into alditol acetates [12], and analysed by GLC on a Hewlett-Packard 5890A chromatograph equipped with a capillary column of Ultra 2. Absolute configurations of monosaccharides were determined by GLC of acetylated (S)-octyl glycosides by the published method [6].

NMR spectroscopy.—NMR spectra were run on a Bruker AM-300 spectrometer for solutions in deuterium oxide at 70 °C with acetone ($\delta_{\rm H}$ 2.225, $\delta_{\rm C}$ 31.45) as internal standard. Standard Bruker software was used in COSY and HETCOR experiments. A 2D ROESY experiment was carried out on a modified Bruker WM-250 spectrometer using the proposed

pulse sequence [13] and a mixing time of 0.23 s; the HDO signal was suppressed by irradiation during 1 s.

Acknowledgements

This work was supported by grant No. 96-04-50460 of the Russian Foundation for Basic Research.

References

- [1] J. Keleti, O. Lüderitz, D. Mlynarcik, and J. Sedlák, *Eur. J. Biochem.*, 20 (1971) 237–244.
- [2] B. Jann, P. Prehm, and K. Jann, *J. Bacteriol.*, 134 (1978) 462–469.
- [3] N.A. Kocharova, Y.A. Knirel, E.S. Stanislavsky, E.V. Kholodkova, C. Lugowski, W. Jachymek, and E. Romanowska, *FEMS Immunol. Med. Microbiol.*, 13 (1996) 1–8.
- [4] N.A. Kocharova, O.V. Bystrova, S.A. Borisova, A.S. Shashkov, Y.A. Knirel, E.V. Kholodkova, and E.S. Stanislavsky, *Carbohydr. Lett.*, in press.
- [5] O. Westphal and K. Jann, Meth. Carbohydr. Chem., 5 (1965) 83–89.
- [6] K. Leontein, B. Lindberg, and J. Lönngren, Carbohydr. Res., 62 (1978) 359–362.
- [7] G.M. Lipkind, A.S. Shashkov, Y.A. Knirel, E.V. Vinogradov, and N.K. Kochetkov, *Carbohydr. Res.*, 175 (1988) 59–75.
- [8] N.K. Kochetkov, E.V. Vinogradov, Y.A. Knirel, A.S. Shashkov, and G.M. Lipkind, *Bioorg. Khim.*, 18 (1992) 116–125.
- [9] K. Bock and C. Pedersen, *J. Chem. Soc.*, *Perkin Trans.* 2, (1974) 293–297.
- [10] Y.A. Knirel and N.K. Kochetkov, *Biochemistry* (*Moscow*), 59 (1994) 1325–1383.
- [11] N.A. Kocharova, J.E. Thomas-Oates, Y.A. Knirel, A.S. Shashkov, U. Dabrowski, N.K. Kochetkov, E.S. Stanislavsky, and E.V. Kholodkova, *Eur. J. Biochem.*, 219 (1994) 653–661.
- [12] J.S. Sawardeker, J.H. Sloneker, and A. Jeanes, *Anal. Chem.*, 37 (1965) 1602–1604.
- [13] M.R. Rance, J. Magn. Reson., 64 (1985) 533-535.